
ICT159 Lecture Notes Topic 8 – Page 1

Topic 8 – Data
Structures

STRUCTURING DATA
 Arrays are extremely powerful constructs, and allow you

to solve problems that otherwise would be infeasible.

 However, they aren’t appropriate in every circumstance.

 If you store many instances of a single value, arrays
work well.

 For example, if you want to store 100 exam marks in
order to process them.

 However, if you want to store many instances of
multiple values, arrays aren’t well suited.

 For example, if you want to store 100 exam marks
along with the names of the students that scored each
result.

 To solve these problems involving many different
possible arrangements of data, you need to design your
own data type.

 When you bundled together different values to design
such a solution, these are called data structures.

 This essentially involves designing your own data type.

ICT159 Lecture Notes Topic 8 – Page 2

USER-DEFINED TYPES
 A first step towards being able to create your own data

types is the ability that C provides to give user-defined

names to any defined data type with the typedef
statement.

 For example, say we want to define a counter variable type

we might say:

 typedef int ctr;

 Now we can define variables of type ctr as if it were a
built-in type:

ctr i;

...

for(i = 0; i < MAX; i++)

...

 The advantage of this is again abstraction because it hides

details like the exact type of the data while simultaneously
telling the reader what the variable’s purpose is.

 However, simply re-naming data types is a trivial use of the

typedef statement and there are much more important
uses.

ICT159 Lecture Notes Topic 8 – Page 3

 Creating Data Structures
 One common way that new data types are created in C is

through something called a struct.
 This is essentially an abbreviation of the term data

structure and is created by combining simple data types.

 While an array allows you to bundle together multiple
pieces of data into one variable, a data structure represents a
new data type that you can define.

 From the new data type, you can create your own variables
of this type.

 Say we are writing a program to keep track of the stock

items held at a factory or warehouse.
 The program is to interoperate with a database that stores

further details about the stock items (like where to order
more from).

 However, the program’s job is primarily to track stock
numbers.

 If the number of items drops below a specific level, the
program will flag a warning.

 Also, if the value of the stock of a particular item exceeds a
fixed amount then the program will also flag a warning to
prevent more stock being purchased.

 This program will probably need to store the following

information:
 A short name describing the stock item.
 The number of each item currently in stock.
 The low watermark for this stock item (after which

more stock must be purchased because it's running out).
 The value of the item.

ICT159 Lecture Notes Topic 8 – Page 4

 Here is a C struct to store all this data for each bin:

const int NAME_SIZE = 50;

struct item

{

 char name[NAME_SIZE];

 int stock;

 int lwm_stock;

 float value;

};

 This is a new complex data type called struct item and
it is made up of the four different variables.

Things to note:

 The semi-colon after the right curly bracket! Everyone
forgets this because it is the only time in C that it is done.

 This structure definition creates a new data type so you
can declare variables of this type.

 However, the name of the data type is struct item and

not simply item.
 So to declare variables of this type you need to write:

 struct item myvar;

 Because this looks ugly, it is common to use typedef to

define a custom type name:

 typedef struct item item;

 ...

 item myvar;

This declares a variable using
the same format as you would

do in declaring an int.

ICT159 Lecture Notes Topic 8 – Page 5

Using Structures
 Now we can create our own data structures, how do we go

about using them?

 Essentially while the struct can be dealt with as a whole,
many operations can only be performed on the fields that
make it up.
 This is because these fields are primitive data types, which

can be processed by the language.

 To access each field we use the following syntax:
 variable.field

 So if we have a variable called firstbin of type item
from before, for the fields that are simple data types we can
use the following assignment statements to put values into

the struct:

firstbin.stock = 10;

firstbin.lwm_stock = 2;

firstbin.value = 29.95;

For the field name that is a string, instead we could do
something like:

if(NAME_SIZE >= (strlen(“iPad Air”) + 1))

strcpy(firstbin.name, “iPad Air”);

else

printf("Not enough room to copy!\n");

 Note that when using the field selector notation (.), the

expression has the type of the field being referenced.

 For example, firstbin.stock behaves exactly like an
ordinary integer.

ICT159 Lecture Notes Topic 8 – Page 6

Parameter Passing and Complex
Data Types
 In general the same rules apply when passing complex data

types into functions.
 One important principle though is that complex types

should always be passed by reference.
 This applies even when they are not to be modified.

 The reason for this is that complex data types take up a lot

more memory space than primitive types (for obvious
reasons).

 Although we have used a simple example that is isn't
huge, they can become much bigger.

 Making a copy of the entire complex data type (as would be

done if passed by value) is therefore often inefficient, both
in terms of the space and the computational work required.

 So as a general rule they should always be passed by
reference.

 Another important point to remember is that functions

cannot return complex data types – they can only be passed
back as parameters.

 Only simple data types can be the return values of
functions.

 Finally remember that the individual fields that make up a

struct can be passed into a function separately, just as
variables of primitive data types can be normally.

ICT159 Lecture Notes Topic 8 – Page 7

Here is a program demonstrating the use of struct and
parameter passing:
#include <stdio.h>

#include <string.h>

/* This needs to be declared here so that

the rest of the program knows about

 * this new type.

 */

const int NAME_SIZE = 50;

struct item

{

 char name[NAME_SIZE];

 int stock;

 int lwm_stock;

 float value;

};

typedef struct item item;

void FillBin(item &bin1)

{

 printf("Enter bin name: ");

 fgets(bin1.name, NAME_SIZE,stdin);

 bin1.name[strlen(bin1.name) - 1] = '\0';

 printf("Enter stock quantity: ");

 scanf("%d%*c", &bin1.stock);

 printf("Enter stock low water mark: ");

 scanf("%d%*c", &bin1.lwm_stock);

 printf("Enter value of stock: ");

 scanf("%f%*c", &bin1.value);

ICT159 Lecture Notes Topic 8 – Page 8

 return;

}

void PrintBin(item &bin)

{

 printf("Bin name: %s\n", bin.name);

 printf("Stock: %d\n", bin.stock);

 printf("Low Watermark Stock: %d\n",

 bin.lwm_stock);

 printf("Value of item: $%.2f\n",

 bin.value);

 return;

}

int main()

{

 item firstbin;

 FillBin(firstbin);

 printf("\n\n");

 PrintBin(firstbin);

 return(0);

}

 NB: Pass by reference.

ICT159 Lecture Notes Topic 8 – Page 9

Combining Arrays and structs
 The fields in a struct can be made up of any data type that

exists at that point.

 As with the last example, this can include other complex
data types such as arrays/strings, and even other structs.
o The important point to remember is that when accessed

using the field selector operator (.), a field in a struct
behaves exactly the same as an ordinary variable of
that type.

 However, you can also combine arrays with structs the
other way by having an array of structs.

 In the example before we declared only a single variable of

type item, so we can only store information about one
stock item.

 More realistically there would probably be many such items
stored in the factory.

 Instead of defining individual struct variables we could
instead just create an array.

 Creating an array of structs is not very difficult, once the
struct type itself has been declared.

 For example, the following code creates an array of 20
items stored in the factory's bins:

const int MAX_ITEMS = 20;

…

item bins[MAX_ITEMS];

ICT159 Lecture Notes Topic 8 – Page 10

 When working with the array of structs, the same principle
as always applies:

Reduce whatever structure you're working with down to

a simple type and then process this as normal.

 For example, the field stock within each element of the

bins array created above is just an int.

 To access this integer, just use the [] to access the array

element you want and then the field selector (.) operator to
access the individual field.

 Therefore, to access the stock field in the first element of

the bins array, you could write something like:

bins[0].stock = 100;

 When working with a field that is itself an array, the
expression becomes more complex but the same principle
applies.

 For example, to read in the name of whatever is in the first

bin (first element of the bins array), you could write
something like:

fgets(bins[0].name, NAME_SIZE,stdin);

bins[0].name[strlen(bins[0].name) - 1] = '\0';

 Work through this expression slowly until you can make
sense of it!

 Of course, as always when working with arrays, you usually
want to use a for loop to process all of the elements in the
array.

 The following program demonstrates all of this.

ICT159 Lecture Notes Topic 8 – Page 11

#include <stdio.h>

#include <string.h>

const int NAME_SIZE = 50;

const int MAX_ITEMS = 3;

/* This needs to be declared here so that the rest of

the program knows about

 * this new type.

 */

struct item

{

 char name[NAME_SIZE];

 int stock;

 int lwm_stock;

 float value;

};

typedef struct item item;

void FillBin(item bins[], int numbins)

{

 int i;

 for(i = 0; i < numbins; i++)

 {

printf("--- Enter details for bin #%d ---\n",

 i+1);

 printf("Enter bin name: ");

 fgets(bins[i].name, NAME_SIZE, stdin);

 bins[i].name[strlen(bins[i].name) - 1] = '\0';

 printf("Enter stock quantity: ");

 scanf("%d%*c", &bins[i].stock);

 printf("Enter stock low water mark: ");

 scanf("%d%*c", &bins[i].lwm_stock);

 printf("Enter value of stock: ");

 scanf("%f%*c", &bins[i].value);

Arrays are
always passed
by reference
automatically;
no & required.

A small number is
used here to make
the program quick
to demonstrate.

ICT159 Lecture Notes Topic 8 – Page 12

 printf("-------------------------------\n\n");

 }

 return;

}

void PrintBin(item bins[], int numbins)

{

 int i;

 for(i = 0; i < numbins; i++)

 {

 printf("--- Details for bin #%d ---\n", i+1);

 printf("Bin name: %s\n", bins[i].name);

 printf("Stock: %d\n", bins[i].stock);

 printf("Low Watermark Stock: %d\n",

 bins[i].lwm_stock);

 printf("Value of item: $%.2f\n",

 bins[i].value);

 printf("-------------------------------\n\n");

 }

 return;

}

int main()

{

 item bins[MAX_ITEMS];

 FillBin(bins, MAX_ITEMS);

 printf("\n\n");

 PrintBin(bins, MAX_ITEMS);

 return(0);

}

